
ICT159 Lecture Notes Topic 8 – Page 1

Topic 8 – Data
Structures

STRUCTURING DATA
 Arrays are extremely powerful constructs, and allow you

to solve problems that otherwise would be infeasible.

 However, they aren’t appropriate in every circumstance.

 If you store many instances of a single value, arrays
work well.

 For example, if you want to store 100 exam marks in
order to process them.

 However, if you want to store many instances of
multiple values, arrays aren’t well suited.

 For example, if you want to store 100 exam marks
along with the names of the students that scored each
result.

 To solve these problems involving many different
possible arrangements of data, you need to design your
own data type.

 When you bundled together different values to design
such a solution, these are called data structures.

 This essentially involves designing your own data type.

ICT159 Lecture Notes Topic 8 – Page 2

USER-DEFINED TYPES
 A first step towards being able to create your own data

types is the ability that C provides to give user-defined

names to any defined data type with the typedef
statement.

 For example, say we want to define a counter variable type

we might say:

 typedef int ctr;

 Now we can define variables of type ctr as if it were a
built-in type:

ctr i;

...

for(i = 0; i < MAX; i++)

...

 The advantage of this is again abstraction because it hides

details like the exact type of the data while simultaneously
telling the reader what the variable’s purpose is.

 However, simply re-naming data types is a trivial use of the

typedef statement and there are much more important
uses.

ICT159 Lecture Notes Topic 8 – Page 3

 Creating Data Structures
 One common way that new data types are created in C is

through something called a struct.
 This is essentially an abbreviation of the term data

structure and is created by combining simple data types.

 While an array allows you to bundle together multiple
pieces of data into one variable, a data structure represents a
new data type that you can define.

 From the new data type, you can create your own variables
of this type.

 Say we are writing a program to keep track of the stock

items held at a factory or warehouse.
 The program is to interoperate with a database that stores

further details about the stock items (like where to order
more from).

 However, the program’s job is primarily to track stock
numbers.

 If the number of items drops below a specific level, the
program will flag a warning.

 Also, if the value of the stock of a particular item exceeds a
fixed amount then the program will also flag a warning to
prevent more stock being purchased.

 This program will probably need to store the following

information:
 A short name describing the stock item.
 The number of each item currently in stock.
 The low watermark for this stock item (after which

more stock must be purchased because it's running out).
 The value of the item.

ICT159 Lecture Notes Topic 8 – Page 4

 Here is a C struct to store all this data for each bin:

const int NAME_SIZE = 50;

struct item

{

 char name[NAME_SIZE];

 int stock;

 int lwm_stock;

 float value;

};

 This is a new complex data type called struct item and
it is made up of the four different variables.

Things to note:

 The semi-colon after the right curly bracket! Everyone
forgets this because it is the only time in C that it is done.

 This structure definition creates a new data type so you
can declare variables of this type.

 However, the name of the data type is struct item and

not simply item.
 So to declare variables of this type you need to write:

 struct item myvar;

 Because this looks ugly, it is common to use typedef to

define a custom type name:

 typedef struct item item;

 ...

 item myvar;

This declares a variable using
the same format as you would

do in declaring an int.

ICT159 Lecture Notes Topic 8 – Page 5

Using Structures
 Now we can create our own data structures, how do we go

about using them?

 Essentially while the struct can be dealt with as a whole,
many operations can only be performed on the fields that
make it up.
 This is because these fields are primitive data types, which

can be processed by the language.

 To access each field we use the following syntax:
 variable.field

 So if we have a variable called firstbin of type item
from before, for the fields that are simple data types we can
use the following assignment statements to put values into

the struct:

firstbin.stock = 10;

firstbin.lwm_stock = 2;

firstbin.value = 29.95;

For the field name that is a string, instead we could do
something like:

if(NAME_SIZE >= (strlen(“iPad Air”) + 1))

strcpy(firstbin.name, “iPad Air”);

else

printf("Not enough room to copy!\n");

 Note that when using the field selector notation (.), the

expression has the type of the field being referenced.

 For example, firstbin.stock behaves exactly like an
ordinary integer.

ICT159 Lecture Notes Topic 8 – Page 6

Parameter Passing and Complex
Data Types
 In general the same rules apply when passing complex data

types into functions.
 One important principle though is that complex types

should always be passed by reference.
 This applies even when they are not to be modified.

 The reason for this is that complex data types take up a lot

more memory space than primitive types (for obvious
reasons).

 Although we have used a simple example that is isn't
huge, they can become much bigger.

 Making a copy of the entire complex data type (as would be

done if passed by value) is therefore often inefficient, both
in terms of the space and the computational work required.

 So as a general rule they should always be passed by
reference.

 Another important point to remember is that functions

cannot return complex data types – they can only be passed
back as parameters.

 Only simple data types can be the return values of
functions.

 Finally remember that the individual fields that make up a

struct can be passed into a function separately, just as
variables of primitive data types can be normally.

ICT159 Lecture Notes Topic 8 – Page 7

Here is a program demonstrating the use of struct and
parameter passing:
#include <stdio.h>

#include <string.h>

/* This needs to be declared here so that

the rest of the program knows about

 * this new type.

 */

const int NAME_SIZE = 50;

struct item

{

 char name[NAME_SIZE];

 int stock;

 int lwm_stock;

 float value;

};

typedef struct item item;

void FillBin(item &bin1)

{

 printf("Enter bin name: ");

 fgets(bin1.name, NAME_SIZE,stdin);

 bin1.name[strlen(bin1.name) - 1] = '\0';

 printf("Enter stock quantity: ");

 scanf("%d%*c", &bin1.stock);

 printf("Enter stock low water mark: ");

 scanf("%d%*c", &bin1.lwm_stock);

 printf("Enter value of stock: ");

 scanf("%f%*c", &bin1.value);

ICT159 Lecture Notes Topic 8 – Page 8

 return;

}

void PrintBin(item &bin)

{

 printf("Bin name: %s\n", bin.name);

 printf("Stock: %d\n", bin.stock);

 printf("Low Watermark Stock: %d\n",

 bin.lwm_stock);

 printf("Value of item: $%.2f\n",

 bin.value);

 return;

}

int main()

{

 item firstbin;

 FillBin(firstbin);

 printf("\n\n");

 PrintBin(firstbin);

 return(0);

}

 NB: Pass by reference.

ICT159 Lecture Notes Topic 8 – Page 9

Combining Arrays and structs
 The fields in a struct can be made up of any data type that

exists at that point.

 As with the last example, this can include other complex
data types such as arrays/strings, and even other structs.
o The important point to remember is that when accessed

using the field selector operator (.), a field in a struct
behaves exactly the same as an ordinary variable of
that type.

 However, you can also combine arrays with structs the
other way by having an array of structs.

 In the example before we declared only a single variable of

type item, so we can only store information about one
stock item.

 More realistically there would probably be many such items
stored in the factory.

 Instead of defining individual struct variables we could
instead just create an array.

 Creating an array of structs is not very difficult, once the
struct type itself has been declared.

 For example, the following code creates an array of 20
items stored in the factory's bins:

const int MAX_ITEMS = 20;

…

item bins[MAX_ITEMS];

ICT159 Lecture Notes Topic 8 – Page 10

 When working with the array of structs, the same principle
as always applies:

Reduce whatever structure you're working with down to

a simple type and then process this as normal.

 For example, the field stock within each element of the

bins array created above is just an int.

 To access this integer, just use the [] to access the array

element you want and then the field selector (.) operator to
access the individual field.

 Therefore, to access the stock field in the first element of

the bins array, you could write something like:

bins[0].stock = 100;

 When working with a field that is itself an array, the
expression becomes more complex but the same principle
applies.

 For example, to read in the name of whatever is in the first

bin (first element of the bins array), you could write
something like:

fgets(bins[0].name, NAME_SIZE,stdin);

bins[0].name[strlen(bins[0].name) - 1] = '\0';

 Work through this expression slowly until you can make
sense of it!

 Of course, as always when working with arrays, you usually
want to use a for loop to process all of the elements in the
array.

 The following program demonstrates all of this.

ICT159 Lecture Notes Topic 8 – Page 11

#include <stdio.h>

#include <string.h>

const int NAME_SIZE = 50;

const int MAX_ITEMS = 3;

/* This needs to be declared here so that the rest of

the program knows about

 * this new type.

 */

struct item

{

 char name[NAME_SIZE];

 int stock;

 int lwm_stock;

 float value;

};

typedef struct item item;

void FillBin(item bins[], int numbins)

{

 int i;

 for(i = 0; i < numbins; i++)

 {

printf("--- Enter details for bin #%d ---\n",

 i+1);

 printf("Enter bin name: ");

 fgets(bins[i].name, NAME_SIZE, stdin);

 bins[i].name[strlen(bins[i].name) - 1] = '\0';

 printf("Enter stock quantity: ");

 scanf("%d%*c", &bins[i].stock);

 printf("Enter stock low water mark: ");

 scanf("%d%*c", &bins[i].lwm_stock);

 printf("Enter value of stock: ");

 scanf("%f%*c", &bins[i].value);

Arrays are
always passed
by reference
automatically;
no & required.

A small number is
used here to make
the program quick
to demonstrate.

ICT159 Lecture Notes Topic 8 – Page 12

 printf("-------------------------------\n\n");

 }

 return;

}

void PrintBin(item bins[], int numbins)

{

 int i;

 for(i = 0; i < numbins; i++)

 {

 printf("--- Details for bin #%d ---\n", i+1);

 printf("Bin name: %s\n", bins[i].name);

 printf("Stock: %d\n", bins[i].stock);

 printf("Low Watermark Stock: %d\n",

 bins[i].lwm_stock);

 printf("Value of item: $%.2f\n",

 bins[i].value);

 printf("-------------------------------\n\n");

 }

 return;

}

int main()

{

 item bins[MAX_ITEMS];

 FillBin(bins, MAX_ITEMS);

 printf("\n\n");

 PrintBin(bins, MAX_ITEMS);

 return(0);

}

